quinta-feira, 26 de abril de 2012

Subconjuntos próprios e impróprios 

             Se A \,\! e B \,\! são conjuntos e todo o elemento x \,\! pertencente a A \,\! também pertence a B \,\!, então o conjunto A \,\! é dito um subconjunto do conjunto B \,\!, denotado por A \subseteq B. Note que esta definição inclui o caso em que A e B possuem os mesmos elementos, isto é, são o mesmo conjunto (A=B). Se A \subseteq B e ao menos um elemento pertencente a B \,\! não pertence a A \,\!, então A \,\! é chamado de subconjunto próprio de B \,\!, denotado por A \subset B. Todo conjunto é subconjunto dele mesmo, entretanto não se enquadra na definição de subconjunto próprio, e é chamado de subconjunto impróprio.
 Conjunto vazio
 
 
        Todo conjunto também possui como subconjunto o conjunto vazio representado por { } ou \emptyset.
Podemos mostrar isto supondo que se o conjunto vazio não pertence ao conjunto em questão, então o conjunto vazio deve possuir um elemento ao menos que não pertença a este conjunto. Como o conjunto vazio não possui elementos, isto não é possível. Como todos os conjuntos vazios são iguais uns aos outros, é permissível falar de um único conjunto sem elementos.

Cardinalidade


         Se um conjunto tem n elementos, onde n é um número natural (possivelmente 0), então diz-se que o conjunto é um conjunto finito com uma cardinalidade de n ou número cardinal n.
Mesmo se o conjunto não possui um número finito de elementos, pode-se definir a cardinalidade, graças ao trabalho desenvolvido pelo matemático Georg Cantor. Neste caso, a cardinalidade poderá ser \aleph_0 (aleph-0), \aleph_1, \aleph_2 ....
Nos dois casos a cardinalidade de um conjunto A é denotada por |A|. Se para dois conjuntos A e B é possível fazer uma relação um-a-um entre seus elementos, então  |A|=|B| .










Nenhum comentário:

Postar um comentário